The Evolution of Statistical Process Control Applied to Blood Product Manufacturing

Alan E. Williams, Ph.D.

Division of Blood Applications

OBRR/CBER/FDA

williamsal@cber.fda.gov

The Evolution of Statistical Process Control Applied to Blood Product Manufacturing

- Introduction
- General QC considerations
- Evolution of a statistical basis for QC using residual WBC contamination of leukoreduced blood components as an example
 - Non-statistical approaches
 - Binomial
 - Scan statistics

Allogeneic Blood Collection in the US

- Approximately 14 million whole blood collections/yr are processed into multiple components
 - red blood cells
 - platelets
 - plasma
- Apheresis procedures are also used to collect these components selectively.

Allogeneic Whole Blood Collection in the US

1002 licensed whole blood collection facilities

- collect 92% of the US blood supply
- distribute interstate

838 "registered-only" facilities (typically hospitals)

- collect 8% of blood supply
- tend to be lower volume operations
- distribute intrastate only (generally within facility)

Allogeneic Blood Collection in the US

- All blood and blood components
 - 21 CFR 211.160(b)"conform to appropriate standards of identity, strength, quality, and purity."
- Some blood components are modified further:
 - leukocyte reduced
 - irradiated
 - pooled (random donor platelets, AHF cryoprecipitate)
 - freezing/deglycerolization

Quality Control Testing–General Considerations

Why do it at all?

- Unexpected sub-optimal reagents or materials
- Unrecognized variation from validated procedures
- Proactive early identification of problems

Quality Control Testing–General Considerations

Why do it statistically?

- Permits a definition of product conformance to a standard with a given probability
- Facilitates the meaningful and efficient identification of non-conformance limits that trigger a need for action
- Allows QC testing to be customized to individual products
 - Different baseline levels of non-conformance
 - Different health impacts of product failure

Quality Control –General Considerations

FDA regulatory policy for Quality Control testing

- Serves as a minimal standard. Industry standards may be more stringent.
- Must define practical strategies for suitable for both very large and very small facilities.

Issue: Low Production Volume

- A large blood establishment may produce several hundred components per day by a variety of procedures.
- A small blood establishment that produces 100 components per week by four different procedures may have only 25 components per week available for QC testing.
- A very small registered facility may routinely produce blood components in numbers as low as n=10 per week

Quality Control –General Considerations

Local quality control procedures are defined by blood establishment Standard operating procedures (SOPs)

- For licensed establishments, SOPs are reviewed in Prior Approval License Supplements
- Compliance with SOPs is reviewed on inspection both pre- and post licensure for licensed firms, and biennially for registered, unlicensed firms

Unique Problems in QC of Blood and Blood Components for Transfusion

- Low volume production facilities have the least opportunity for statistical QC, but may need it the most due to infrequent use of procedures
- Each blood component is an individual lot. Therefore, labor and cost of QC are major factors in the practicality of testing (particularly if product is sacrificed).
- Some production variables (usually donor-related) cannot be controlled by current technology (e.g. occult bacteremia, HbS-related leukocyte reduction failure). These contribute to baseline non-conformance and are not process failures

The dilemma regarding QC of WBC removal by pre-storage leukoreduction

- FDA has always encouraged the use of pre-storage leukoreduction
- Leukoreduced products most likely have benefits for the general recipient population, but the cost-effectiveness of universal leukoreduction has been hotly debated and studies have been suggestive, but not compelling
- **Consider the dilemma is how to define a quality control strategy that does not inhibit the use of leukoreduction, but provides rigorous QC for patient subpopulations where WBC removal is vital (e.g CMV susceptible patients)?

Evolution of a Conceptual Framework for Statistical Process Control (SPC) for Biological Products

Quality Control Factors to consider

- 100% product qualification vs. sampling
 - How critical is final product specification?
- Appropriate distributions
 - dichotomous vs. continuous outcome
 - log-normal distribution?
- One vs. two tail
 - (automobile piston vs. WBC count)
- Frequency of QC cycle
 - How long can out-of-control process be tolerated?

Evolution of a Conceptual Framework for Statistical Process Control (SPC)

- I. "Population testing" (aka 100% Quality Control)*
 - apheresis platelet counts
 - platelet bacterial contamination AABB standard
 - leukoreduced products for CMV- susceptible
 patients (proposed in LR draft guidance January, 2001)

^{*} Product release testing is a subset

100% Quality Control WBC removal

Advantages:

- 100% of labeled LR products will meet product standard
- Reduces inappropriate WBC exposure to susceptible patient sub-populations (e.g. CMV susceptible)
- Stimulates new technologies that will facilitate costeffective WBC enumeration.

Disadvantages:

- Manual counts are very labor intensive
- Limited selection of automated counting devices
- Blood centers may ultimately choose to provide fewer leukoreduced products.

Evolution of a Conceptual Framework for Statistical Process Control (SPC)

II. "Sample"-based quality control without a statistical framework

e.g evaluate 1% of representative products (or at least n=4/month for facilities producing <400 units per month).

Current practice for most blood component process control

Current Process Control Recommendations-Pre-storage Leukoreduction

1996 Memo:

Evaluate 1% of representative products (or at least n=4/mo.)

< 5 x 10⁶ residual and 85% retention of original RBC content

<8.3 x 10⁵ residual WBC and 85% retention of platelets (<5 x 10⁶ platelets, pheresis)

All evaluated products must meet specs, if failure observed label must be revised and process investigated.

WBC counting methods: Nageotte, Flow, other validated methods

"Sample"-based quality control without a statistical framework

Advantages

- Simple, may offer low cost
- Staff training is straightforward

Disadvantages

- Lack of rigor may allow non-conforming products to be produced for an extended period without detection (may lead to public health impact, large recalls/market withdrawals, targeted FDA inspection)
- Sampling scheme defined may actually be unnecessarily large

Binomial approach to SPC

• Pre-defined independent random sample clusters are tested over a pre-defined time period with pre-established failure levels.

• Considers:

- Background levels of non-conformance
- Statistical parameters of the control strategy
- Minimal acceptable time within which to detect a series of non-random process failures (safety)

Binomial approach to SPC

Examples of sample size and maximum # of failed tests expected (at 95% confidence) for a conforming process

Failure rate allowed	QC sample size	Max # failed tests
10%	NA	
5%	59	0
5%	93	1
5%	124	2
1%	299	0
1%	471	1
0.5%	598	0
0.5%	947	1

Binomial approach to SPC for WBC removal Leukoreduction draft guidance January, 2001

- Binomial SPC to assure with 95% confidence that 95% of leukocyte reduced products meet the product standard.
 - 95% conformance safe and pure product
 - 95% CI is accepted scientific norm(p<.05 that chance non-conformance will exceed 5%)
- Compatible with ISBT Working Group recommendations

Binomial approach to statistical QC for WBC removal (cont.)

(Leukoreduction draft guidance January, 2001)

- Process validation = 60 consecutive WBC counts
- Ongoing QC = 1% of total production (but not less than random 5 counts per week/60 counts per quarter).
- Binomial SPC criteria can be met by testing n=60 without failure, or n=93 with one failure, or n=124 with two failures....
- QC failure requires consecutive counts of next 60 units
 - 0/60 consecutive resume normal QC
 - $\ge 1/60$ consecutive out of control process/ investigation

Binomial approach to statistical QC for WBC removal (cont.)

Leukoreduction draft guidance January, 2001)

- Exact binomial distribution, single tail
 - Does not require log-normal distribution
- WBC Counts can be "pass/fail"
- Alternate, equivalent SOPs within defined statistical parameters may be acceptable
 - Normal/Log normal distribution may be necessary
 - Alternate approaches reviewed by CBER as PAS

Advantages and Disadvantages of Binomial Approach

Advantages

- Defines parameters of product conformance
- Conceptually feasible (FDA)
- Assures that 95% of products labeled as "leukocytes reduced" will meet the product standard with 95% confidence.

Disadvantages

- Occasional products with levels of residual WBCs that exceed the product standard may unknowingly be transfused to CMV-susceptible patients.
- The QC strategy proposed may be complex and contribute to reduced compliance. Operational feasibility questioned by industry
- "Clusters" of failures at end points may be masked

Scan Statistics

- Identifies "clusters" of events in time and space
 - many product failures are non-random
 - bad reagent or soft goods
 - faulty machine or software
 - staff errors
- Uses a rolling window of test results for non-conformance assessment

Scan Statistics -

Probability that at least k events are observed is:

$$P(S \ge k) = 1 - Q_L$$

Probability of detecting out of control sample when probability is increased by a factor of δ is:

$$\frac{\mathbf{2} * \mathbf{b}(k,m,\,\delta p)}{\mathbf{P}(\mathbf{S} \ge \mathbf{k}|\,\delta p) = 1\text{-B}(k,m,\,\delta p) + \Theta\text{-}1} \qquad \frac{b(k+1,m,\,\delta p)}{\Theta^2}$$

Scan Statistics -

N = # of tests

m = window size

k = observed failures

p = probability of one obs failure

P = probability of 2 or more failures

Delta = threshold (3x, p, 5x p.... etc)

Power = Power to detect Delta within m

Scan Statistics e.g. Process control - Residual WBC

N m k p P Power θ with tests with which is a size obstail θ by θ with θ by θ and θ with θ by θ and θ with θ with θ by θ and θ with θ with θ and θ with θ with θ and θ with θ and θ with θ with θ with θ and θ with θ wi

Translation: We are counting a moving window of n=233 within a group of 1200 tests. When observing a second failure in our window, we would be detecting an overall failure rate at 3x baseline with 84% power with no more than a 5% chance of falsely determining an inspec process to be out of spec.

Example

Let's say that 24,000 Platelets, Pheresis are collected per year at your blood center.

- Test ~2,400 per year
- Random selection from total collections
- For this example, calculations use a "window" of 120 tests
 - 3 failures in the 120 test "window" would trigger an investigation of an unacceptable level of nonconformance
 - The false positive rate would be 4%

How Does This Work?

- For this example, let's say you perform 10 tests on any given day
- Start the rolling sample window of 120 tests.
 - As long as you have < 3 failures, the level of nonconformance for the process is considered to be acceptable.
 - After 120 tests are complete, the window "rolls" forward and the next 120 tests now include the testing of the samples from days 2-12, and a new set of 10 samples; those tested on the 13th day.

First 120

Test day	1	2	3	4	5	6
Tests	10	20	30	40	50	60
Failures	0	0	0	1	0	0

Test day	7	8	9	10	11	12
Tests	70	80	90	100	110	120

Failures 0 0 1 0 0 0

Second 120

Failures

Test day	2	3	4	5	6	7	
Tests	10	20	30	40	50	60	
Failures	0	0	1	0	0	0	
Test day	8	9	10	11	12	13	
Tests	70	80	90	100	110	120	

0

0

- In the event of QC failure (trigger reached):
 - A complete failure investigation should be initiated
 - Donor-related? (may be non-process)
 - Technical/Operator error/SOP adherence
 - Filter related performance: lot number
 - Sampling
 - Cell counting methodology
 - Manufacturer contact

- Corrective action and follow-up should be performed:
 - If resolved, QC should be re-initiated
 - -The count of tests restarts at 0 (or day 1)
 - If not resolved, revalidation performed as appropriate

Summary

- Process control for blood components is complex and often consists of trying to detect rare nonconformance events with small samples.
- Current thinking is that in the future, FDA will recommend statistical parameters for process control where appropriate
 - FDA will provide an acceptable procedure (in user-friendly format)
 - Alternate QC approaches will be considered that meet the defined parameters

References

- Glaz J, Naus J, Wallenstein S. Scan Statistics 2001. Springer Publishing.
- Lachenbruch PA, Foulkes MA, Williams, AE, Epstein JS. Potential use of the scan statistic in the quality control of blood products J Pharm Statistics 15:353-366, 2005